3 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationRecent breakthroughs in silicon photonics technology are enabling the integration of optical devices into silicon-based semiconductor processes. Photonics technology enables high-speed, high-bandwidth, and high-fidelity communications on the chip-scale-an important development in an increasingly communications-oriented semiconductor world. Significant developments in silicon photonic manufacturing and integration are also enabling investigations into applications beyond that of traditional telecom: sensing, filtering, signal processing, quantum technology-and even optical computing. In effect, we are now seeing a convergence of communications and computation, where the traditional roles of optics and microelectronics are becoming blurred. As the applications for opto-electronic integrated circuits (OEICs) are developed, and manufacturing capabilities expand, design support is necessary to fully exploit the potential of this optics technology. Such design support for moving beyond custom-design to automated synthesis and optimization is not well developed. Scalability requires abstractions, which in turn enables and requires the use of optimization algorithms and design methodology flows. Design automation represents an opportunity to take OEIC design to a larger scale, facilitating design-space exploration, and laying the foundation for current and future optical applications-thus fully realizing the potential of this technology. This dissertation proposes design automation for integrated optic system design. Using a buildingblock model for optical devices, we provide an EDA-inspired design flow and methodologies for optical design automation. Underlying these flows and methodologies are new supporting techniques in behavioral and physical synthesis, as well as device-resynthesis techniques for thermal-aware system integration. We also provide modeling for optical devices and determine optimization and constraint parameters that guide the automation techniques. Our techniques and methodologies are then applied to the design and optimization of optical circuits and devices. Experimental results are analyzed to evaluate their efficacy. We conclude with discussions on the contributions and limitations of the approaches in the context of optical design automation, and describe the tremendous opportunities for future research in design automation for integrated optics

    Channel routing for integrated optics

    Get PDF
    pre-printIncreasing scope and applications of integrated optics necessitates the development of automated techniques for physical design of optical systems. This paper presents an automated, planar channel routing technique for integrated optical waveguides. Integrated optics is a planar technology and lacks the inherent signal restoration capabilities of static-CMOS. Therefore, signal loss minimization-as a function of waveguide crossings and bends-is the primary objective of this technique. This is in contrast to track and wire-length minimization of traditional VLSI routing. Our optical channel router guarantees minimal waveguide crossings by drawing upon sorting-based techniques for waveguide routing. To further improve our solutions in terms of signal loss, we extend the router to reduce the number of bends produced during routing. Finally, we implement the optical channel routing technique and describe the experimental results, comparing the costs of routing solutions with respect to waveguide crossings, bends, and channel height

    A methodology for physical design automation for integrated optics

    Get PDF
    pre-printAdvancements in silicon photonics technology are enabling large scale integration of electro-optical circuits and systems. To fully exploit this potential, automated techniques for design space exploration and physical synthesis for integrated optics must be developed. This paper investigates how conventional VLSI physical design automation techniques can be adapted for integrated optics applications.We present an overall methodology for cell-placement, global routing, and detail routing for physical synthesis of optical circuits. In addition, we highlight optics-specific constraint models, design rules and optimization criteria that will have to be accounted for in physical design automation
    corecore